VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (I.T.) VII-Semester Supplementary Examinations, July-2022

Cryptography and Network Security (PE-I)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	Use Fermat's theorem to find a number x between 0 and 28 with x ⁸⁵ congruent to 6 modulo 29.	2	3	1	2
2.	What is the need for security? Draw the model for network security.	2	1	1	1
3.	Encrypt the message "this is an exercise" using additive Cipher with key=20.	2	3	2	2
4.	What is the necessity of block cipher modes of operation? List out the advantages and disadvantages of output feedback mode.	2	2	2	1
5.	Explain Encryption/Decryption procedure using Elliptic Curve Cryptography.	2	1	3	1
6.	Two parties use the Diffie-Hellman key exchange protocol with p=23 and g=5. If the common secret that both sides compute=21, then what are the possible values of the initial secrets chosen by each of them?	2	3	3	2
7.	Identify the Security Requirements of message authentication?	2	1	4	1
8.	Compare and Contrast MACs based on Hash functions (HMAC) and MACs based on Block Ciphers (CMAC).	2	4	4	2
9.	List and briefly define types of cryptanalytic attacks.	2	1	5	1
10.	List important design considerations for a stream cipher. Why is not desirable to reuse a stream cipher key?	2	2	5	1
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Define Euler's Totient Function. Prove that, $\phi(pq) = (p-1)(q-1)$, where p and q are prime numbers.	4	3	1	2
b)	Prove the following:	4	3	1	2
	i) [(a mod n) - (b mod n)] mod n = (a - b) mod n ii) [(a mod n) * (b mod n)] mod n = (a * b) mod n				
12. a)	Use Playfair Cipher with key "COMPUTER" to encrypt the message "CRYPTOGRAPHY".	4	3	2	2
b)	Explain the S-box design of DES algorithm. Describe single round of DES algorithm.	4	2	2	1

13. a)	Perform encryption and decryption using RSA Algorithm for the following:	4	3	3	2
	P=7; q=11; e=13; M=8.				
b)	Consider a Diffie-Hellman scheme with a common prime $q = 11$ and primitive root $\alpha = 2$.	4	3	3	2
79	 i) Show that 2 is a primitive root of 11. ii) If user A has public key Y_A = 9, what is A's private key? iii) If user B has public key Y_B = 3, what is the shared secret key K, shared with A. 				
14. a)	List different types of attacks addressed by message authentication.	4	1	4	1
b)	Illustrate the working of SHA-1 with neat sketch.	4	2	4	1
15. a)	What is ciphertext only attack, known plaintext attack and chosen plaintext attack? Explain in detail.	4	1	5	1
b)	Explain Shamir's Secret sharing scheme with an example.	4	2	5	1
16. a)	Find the least residue of 9 ⁷⁹⁴ modulo 73.	4	3	1	2
b)	Compare AES to DES. For each of the following elements of DES, indicate the comparable element in AES or explain why is not needed in AES.	4	3	2	2
	i) XOR of subkey material with the input to the f function				
	ii) XOR of the f function output with the left half of the block				
	iii) f function				
	iv) Permutation P				
17.	Answer any two of the following:	2 1791			
a)	Consider an ElGamal scheme with a common prime q = 71 and a primitive root	4	3	3	2
	a = 7.				
	 i) If B has public key Y_B = 3 and A choose the random integer k = 2, what is the Ciphertext of M = 30? ii) If A chooses a different value of k and the encoding of M = 30 is C = (59, C₂), what is the integer value of C₂? 				
b)	How digital signature is implemented using RSA approach.	4	2	4	
c)	Describe about Identity Based Encryption (IBE) with an example.	4	2	5	

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	30%
iii)	Blooms Taxonomy Level – 3 & 4	50%